Subjective Earnings and Employment Dynamics

Manuel Arellano, Orazio Attanasio, Margherita Borella, Mariacristina De Nardi, Gonzalo Paz-Pardo

29 June 2024

2024 Annual Meeting Society for Economic Dynamics

What do we do?

- We show how to use subjective expectations on wage **offers** to identify a model of earnings and employment dynamics
 - Wage offer expectations allow us to identify earnings dynamics, avoiding self-selection
 - Employment transition expectations conditioned on counterfactual offers allow us to identify a model of endogenous employment dynamics
- We estimate a rich process of earnings dynamics and employment transitions as perceived by individuals
- We need **much weaker assumptions** than when relying only on income realizations

How has the literature estimated earnings dynamics so far?

Modeling only earnings

• Mainly non-structural methods (only some of which worry about selection)

• Modeling both earnings and employment dynamics

- Fully specified search models with unemployment and job switches
- Rich semi-structural models (Altonji, Smith, Vidangos, 2013)
- But... progress in modeling both earnings and employment hampered by:
 - Identification difficulties due to selection into employment and jobs
 - Estimation challenges due to the nonlinear nature of their outcomes

How has the literature estimated earnings dynamics so far?

• Modeling only earnings

- Mainly non-structural methods (only some of which worry about selection)
- Modeling both earnings and employment dynamics
 - Fully specified search models with unemployment and job switches
 - Rich semi-structural models (Altonji, Smith, Vidangos, 2013)
- But... progress in modeling both earnings and employment hampered by:
 - Identification difficulties due to selection into employment and jobs
 - Estimation challenges due to the nonlinear nature of their outcomes

Our novel approach

- We use
 - People's subjective expectations about future outcomes and offers
 - A flexible and rich earnings framework including
 - Unemployment risk
 - Job switches
- Simpler, and more general approach to estimate earnings and employment dynamics
- Two key benefits
 - Identification of model parameters based on weaker assumptions and not driven by functional form and/or exclusion restrictions
 - Estimation relies on simple linear fixed-effects methods to estimate a nonlinear dynamic model with unobserved heterogeneity

Our novel approach

- We use
 - People's subjective expectations about future outcomes and offers
 - A flexible and rich earnings framework including
 - Unemployment risk
 - Job switches
- Simpler, and more general approach to estimate earnings and employment dynamics
- Two key benefits
 - Identification of model parameters based on weaker assumptions and not driven by functional form and/or exclusion restrictions
 - Estimation relies on simple linear fixed-effects methods to estimate a nonlinear dynamic model with unobserved heterogeneity

Data

The Survey of Consumer Expectations, New York FED

- Individual-level, online rotating panel, 2014-2019. Participants interviewed for 12 months
- Every month, general questionnaire. In March, July, and November, labor questionnaires
- Sample: male, age 25-60, non self-employed (1900 individuals observed up to 3 times)
- Subjective expectations about future earnings and probabilities of employment or unemployment
- Subjective probability distributions about job offers
- Subjective probabilities of accepting hypothetical offers (experimentation within the survey)

histograms

Data

The Survey of Consumer Expectations, New York FED

- Individual-level, online rotating panel, 2014-2019. Participants interviewed for 12 months
- Every month, general questionnaire. In March, July, and November, labor questionnaires
- Sample: male, age 25-60, non self-employed (1900 individuals observed up to 3 times)
- Subjective expectations about future earnings and probabilities of employment or unemployment
- Subjective probability distributions about job offers
- Subjective probabilities of accepting hypothetical offers (experimentation within the survey)

histograms

Expectations on best offers

What do you think the annual salary for the best offer you receive will be?

 \overline{y}_{it}^{of}

Expectations on best offers

What do you think the annual salary for the best offer you receive will be?

What is the percent chance of an offer of... ?

 \overline{y}_{it}^{of}

$$\begin{array}{c} < 0.8 * \overline{y}_{it}^{of} & 13\% \\ [0.8 - 0.9] * \overline{y}_{it}^{of} & 20\% \\ [0.9 - 1.0] * \overline{y}_{it}^{of} & 34\% \\ [1.0 - 1.1] * \overline{y}_{it}^{of} & 22\% \\ [1.1 - 1.2] * \overline{y}_{it}^{of} & 7\% \\ > 1.2 * \overline{y}_{it}^{of} & 4\% \end{array}$$

Data

Expectations on best offers

What do you think the annual salary for the best offer you receive will be?

What is the percent chance of an offer of... ?

What is the probability that you will accept it?

 \overline{y}_{it}^{of}

Data

Expectations on best offers

What do you think the annual salary for the best offer you receive will be?

of an offer of ? that you will accept it? $\left\{ \begin{array}{cccc} < 0.8 * \overline{y}_{it}^{of} & 13\% & \longrightarrow \\ [0.8 - 0.9] * \overline{y}_{it}^{of} & 20\% & \longrightarrow \\ [0.9 - 1.0] * \overline{y}_{it}^{of} & 34\% & \longrightarrow \\ [1.0 - 1.1] * \overline{y}_{it}^{of} & 22\% & \longrightarrow \\ [1.1 - 1.2] * \overline{y}_{it}^{of} & 7\% & \longrightarrow \\ > 1.2 * \overline{y}_{it}^{of} & 4\% & \longrightarrow \end{array} \right.$

What is the percent chance

Identification. 1: persistence 2: risk and earnings dynamics 3: employment dynamics

AABDP

What is the probability

12% 27% 45% 59% 72%

A model of earnings dynamics, inspired by Altonji, Smith, Vidangos (2013)

• Log earnings are given by

$$egin{array}{rcl} y_{i,t+1} &=& y_{it+1}^* imes e_{i,t+1}; & e_{i1} & ext{given} \ y_{it+1}^* &=& x_{i,t+1}' \gamma + \mu_i + \omega_{i,t+1} + v_{ij,t+1} \ \omega_{i,t+1} &=&
ho \omega_{i,t} + arepsilon_{i,t+1}^{\omega} \end{array}$$

$$\begin{aligned}
\psi_{ij,t+1} &= \begin{cases}
\psi_{ij,t+1}^{0} = \psi_{ij,t} & \text{if } s_{i,t+1} = 0 \\
\psi_{ij,t+1}^{1} &= \phi \psi_{ij,t} + \varepsilon_{ij,t+1}^{\psi} & \text{if } s_{i,t+1} = 1 \\
y_{i,t+1}^{*} &= \begin{cases}
y_{i,t+1}^{0*} & \text{if } s_{i,t+1} = 0 \\
y_{i,t+1}^{1*} & \text{if } s_{i,t+1} = 1
\end{aligned}$$
(4)

• Observed earnings result from both the earnings process and employment transitions

AABDP

(1)

A model of earnings dynamics, inspired by Altonji, Smith, Vidangos (2013)

• Log earnings are given by

$$y_{i,t+1} = y_{it+1}^* \times e_{i,t+1}; \quad e_{i1} \text{ given}$$
(1)

$$y_{it+1}^* = x'_{i,t+1}\gamma + \mu_i + \omega_{i,t+1} + v_{ij,t+1}$$
(2)

$$\omega_{i,t+1} = \rho\omega_{i,t} + \varepsilon_{i,t+1}^{\omega}$$
(3)

$$v_{ij,t+1} = \begin{cases} v_{ij,t+1}^{0} = v_{ij,t} & \text{if } s_{i,t+1} = 0\\ v_{ij,t+1}^{1} = \phi v_{ij,t} + \varepsilon_{ij,t+1}^{v} & \text{if } s_{i,t+1} = 1 \end{cases}$$

$$y_{i,t+1}^{*} = \begin{cases} y_{i,t+1}^{0*} & \text{if } s_{i,t+1} = 0\\ y_{i,t+1}^{1*} & \text{if } s_{i,t+1} = 1 \end{cases}$$
(5)

Observed earnings result from both the earnings process and employment transitions

A model of earnings dynamics, inspired by Altonji, Smith, Vidangos (2013)

• Log earnings are given by

$$y_{i,t+1} = y_{it+1}^* \times e_{i,t+1}; \quad e_{i1} \text{ given}$$
(1)

$$y_{it+1}^* = x'_{i,t+1}\gamma + \mu_i + \omega_{i,t+1} + v_{ij,t+1}$$
(2)

$$\omega_{i,t+1} = \rho\omega_{i,t} + \varepsilon_{i,t+1}^{\omega}$$
(3)

$$i_{j,t+1} = \begin{cases} v_{i_{j,t+1}}^0 = v_{i_{j,t}} & \text{if } s_{i,t+1} = 0\\ v_{i_{j,t+1}}^1 = \phi v_{i_{j,t+1}} & \text{if } s_{i,t+1} = 1 \end{cases}$$

$$y_{i,t+1}^* = \begin{cases} y_{i,t+1}^{0*} & \text{if } s_{i,t+1} = 0\\ y_{i,t+1}^{1*} & \text{if } s_{i,t+1} = 1 \end{cases}$$
(5)

• Observed earnings result from both the earnings process and employment transitions

AABDP

7/18

A model of earnings dynamics, inspired by Altonji, Smith, Vidangos (2013)

• Log earnings are given by

$$y_{i,t+1} = y_{i,t+1}^* \times e_{i,t+1}; \quad e_{i1} \text{ given}$$
(1)

$$y_{i,t+1}^* = x_{i,t+1}' + \mu_i + \omega_{i,t+1} + v_{i,t+1}$$
(2)

$$\omega_{i,t+1} = \rho \omega_{i,t} + \varepsilon_{i,t+1}^{\omega}$$
(3)

$$\underbrace{v_{ij,t+1}}_{v_{ij,t+1}} = \begin{cases} v_{ij,t+1}^{0} = v_{ij,t} & \text{if } s_{i,t+1} = 0\\ v_{ij,t+1}^{1} = \phi v_{ij,t} + \varepsilon_{ij,t+1}^{v} & \text{if } s_{i,t+1} = 1 \end{cases}$$

$$\begin{aligned} y_{i,t+1}^{*} = \begin{cases} y_{i,t+1}^{0*} & \text{if } s_{i,t+1} = 0\\ y_{i,t+1}^{1*} & \text{if } s_{i,t+1} = 1 \end{cases}$$
(5)

• Observed earnings result from both the earnings process and employment transitions

A model of earnings dynamics, inspired by Altonji, Smith, Vidangos (2013)

• Log earnings are given by

$$y_{i,t+1} = y_{it+1}^* \times e_{i,t+1}; \quad e_{i1} \text{ given}$$
(1)

$$y_{it+1}^* = x'_{i,t+1}\gamma + \mu_i + \omega_{i,t+1} + v_{ij,t+1}$$
(2)

$$y_{it+1} = \alpha_{i,t+1} - \alpha_{i,t+1} + v_{ij,t+1}$$
(3)

$$\omega_{i,t+1} = \rho \omega_{i,t} + \varepsilon_{i,t+1}^{\omega}$$
(3)

$$\upsilon_{ij,t+1} = \begin{cases}
\upsilon_{ij,t+1}^{0} = \upsilon_{ij,t} & \text{if } s_{i,t+1} = 0 \\
\upsilon_{ij,t+1}^{1} = \phi \upsilon_{ij,t} + \varepsilon_{ij,t+1}^{\upsilon} & \text{if } s_{i,t+1} = 1
\end{cases}$$

$$y_{i,t+1}^{*} = \begin{cases}
y_{i,t+1}^{0*} & \text{if } s_{i,t+1} = 0 \\
y_{i,t+1}^{1*} & \text{if } s_{i,t+1} = 1
\end{cases}$$
(4)

• Observed earnings result from both the earnings process and employment transitions

AABDP

29 June 2024

A model of earnings dynamics, inspired by Altonji, Smith, Vidangos (2013)

• Log earnings are given by

$$y_{i,t+1} = y_{it+1}^* \times e_{i,t+1}; \quad e_{i1} \text{ given}$$
(1)

$$y_{it+1}^* = x'_{i,t+1}\gamma + \mu_i + \omega_{i,t+1} + v_{ij,t+1}$$
(2)

$$\omega_{i,t+1} = \rho \omega_{i,t} + \varepsilon_{i,t+1}^{\omega} \tag{3}$$

$$\upsilon_{ij,t+1} = \begin{cases}
\upsilon_{ij,t+1}^{0} = \upsilon_{ij,t} & \text{if } s_{i,t+1} = 0 \\
\upsilon_{ij,t+1}^{1} = \phi \upsilon_{ij,t} + \varepsilon_{ij,t+1}^{\upsilon} & \text{if } s_{i,t+1} = 1
\end{cases}$$

$$y_{i,t+1}^{*} = \begin{cases}
y_{i,t+1}^{0*} & \text{if } s_{i,t+1} = 0 \\
y_{i,t+1}^{1*} & \text{if } s_{i,t+1} = 1
\end{cases}$$
(4)

• Observed earnings result from both the earnings process and employment transitions

AABDP

29 June 2024

7/18

Employment transitions

• For the unemployed, the probability of new employment satisfies

$$\text{logit}\left(p_{i,t}^{ue}\right) = x_{i,t+1}' \gamma^u + \delta_y^u y_{i,t+1}^{1*} + b_\mu^u \mu_i + b_\eta^u \eta_i^u \tag{6}$$

• For the employed, the probabilities of staying in the job or changing jobs satisfy

- They result from comparing the values of the various states
- η_i mobility individual effect
- If $\delta_{y}^{u} \neq 0$, endogenous selection into employment

• If δ_y^0 or $\delta_y^1 \neq 0$, endogenous selection into both job switches and employment AABDP Subjective expectations 29 June 2024

Mapping models and data, the key idea

- Use model's equations to compute the same expectations that we have in the data
- Use resulting system of equations for expectations and subjective expectation data to estimate model's parameters with 2-step procedure
 - First step estimates persistence and risk allowing for reduced-form unobserved heterogeneity
 - Second step disentangles the ability, mobility, and job-match components of unobserved heterogeneity
- Use linear estimators involving fixed effects regressions (first step) and GMM to enforce covariance restrictions (second step)

How does our approach work? The earnings equation

• We can rewrite the AR(1) process for ω_{it+1} as:

$$\underbrace{y_{it+1}^{*} - x_{it+1}^{\prime}\gamma - \mu_{i} - v_{ij(t+1)}}_{\omega_{it+1}} = \rho \underbrace{\left(y_{i,t}^{*} - x_{i,t}^{\prime}\gamma - \mu_{i} - v_{ij(t)}\right)}_{\omega_{it}} + \varepsilon_{it+1}^{\omega}$$
(9)

• which we can rearrange as:

$$y_{it+1}^* = \rho y_{i,t}^* + (x_{it+1} - \rho x_{i,t})' \gamma + (1 - \rho) \mu_i + v_{ij(t+1)} - \rho v_{ij(t)} + \varepsilon_{i,t+1}^{\omega}.$$
(10)

• In typical survey datasets, the realized outcome y_{it+1} is only observed for those who work in t + 1 (possible endogenous selection)

- It depends on non-strictly exogenous variables (y_{it}) and unobserved heterogeneity (μ_i) .
- The job-specific term poses additional challenges in estimation.

AABDP

Subjective expectations

How does our approach work? The earnings equation

• We can rewrite the AR(1) process for ω_{it+1} as:

$$\underbrace{y_{it+1}^* - x_{it+1}^\prime \gamma - \mu_i - v_{ij(t+1)}}_{\omega_{it+1}} = \rho \underbrace{\left(y_{i,t}^* - x_{i,t}^\prime \gamma - \mu_i - v_{ij(t)}\right)}_{\omega_{it}} + \varepsilon_{it+1}^\omega \tag{9}$$

which we can rearrange as:

$$y_{it+1}^* = \rho y_{i,t}^* + (x_{it+1} - \rho x_{i,t})' \gamma + (1 - \rho) \mu_i + v_{ij(t+1)} - \rho v_{ij(t)} + \varepsilon_{i,t+1}^{\omega}.$$
(10)

- In typical survey datasets, the realized outcome y_{it+1} is only observed for those who work in t + 1 (possible endogenous selection)
- It depends on non-strictly exogenous variables (y_{it}) and unobserved heterogeneity (μ_i) .
- The job-specific term poses additional challenges in estimation.

How does our approach work? The earnings equation

• We can rewrite the AR(1) process for ω_{it+1} as:

$$\underbrace{\underbrace{y_{it+1}^{*} - x_{it+1}^{\prime}\gamma - \mu_{i} - v_{ij(t+1)}}_{\omega_{it+1}} = \rho \underbrace{\left(y_{i,t}^{*} - x_{i,t}^{\prime}\gamma - \mu_{i} - v_{ij(t)}\right)}_{\omega_{it}} + \varepsilon_{it+1}^{\omega}$$
(9)

• which we can rearrange as:

$$y_{it+1}^* = \rho y_{i,t}^* + (x_{it+1} - \rho x_{i,t})' \gamma + (1 - \rho) \mu_i + v_{ij(t+1)} - \rho v_{ij(t)} + \varepsilon_{i,t+1}^{\omega}.$$
(10)

- In typical survey datasets, the realized outcome y_{it+1} is only observed for those who work in t + 1 (possible endogenous selection)
- It depends on non-strictly exogenous variables (y_{it}) and unobserved heterogeneity (μ_i) .
- The job-specific term poses additional challenges in estimation.

How does our approach work? The earnings equation

• We can rewrite the AR(1) process for ω_{it+1} as:

$$\underbrace{y_{it+1}^* - x_{it+1}^\prime \gamma - \mu_i - \upsilon_{ij(t+1)}}_{\omega_{it+1}} = \rho \underbrace{\left(y_{i,t}^* - x_{i,t}^\prime \gamma - \mu_i - \upsilon_{ij(t)}\right)}_{\omega_{it}} + \varepsilon_{it+1}^\omega \tag{9}$$

• which we can rearrange as:

$$y_{it+1}^* = \rho y_{i,t}^* + (x_{it+1} - \rho x_{i,t})' \gamma + (1 - \rho) \mu_i + \upsilon_{ij(t+1)} - \rho \upsilon_{ij(t)} + \varepsilon_{i,t+1}^{\omega}.$$
(10)

- In typical survey datasets, the realized outcome y_{it+1} is only observed for those who work in t + 1 (possible endogenous selection)
- It depends on non-strictly exogenous variables (y_{it}) and unobserved heterogeneity (μ_i) .
- The job-specific term poses additional challenges in estimation.

Subjective expectations

How does our approach work? Using point expectations of offers

• We equate expected "annual salary of best offer received in the next 4 months" with latent earnings next period

• Let $\Omega_{it} = \left(y_{i,t}^*, x_{i,s}, \mu_i, v_{ij(t)}\right)$, we can write

$$E\left(y_{i,t+1}^{1*} \mid \Omega_{it}\right) = \rho y_{i,t}^{*} + (x_{i,t+1} - \rho x_{i,t})' \gamma + (1 - \rho) \mu_{i} + (\phi - \rho) v_{ij,t}$$

where we use

$$E\left(\varepsilon_{i,t+1}^{\omega} \mid \Omega_{it}\right) = E\left(\varepsilon_{i,t+1}^{\upsilon} \mid \Omega_{it}\right) = 0$$
$$E\left(\upsilon_{ij(t+1)}^{1} \mid \Omega_{it}\right) = \phi\upsilon_{ij,t}$$

How does our approach work? Using point expectations of offers

• We equate expected "annual salary of best offer received in the next 4 months" with latent earnings next period

• Let
$$\Omega_{it}=\left(y_{i,t}^{*},x_{i,s},\mu_{i},v_{ij(t)}
ight)$$
, we can write:

$$E\left(y_{i,t+1}^{1*} \mid \Omega_{it}\right) = \rho y_{i,t}^{*} + \left(x_{i,t+1} - \rho x_{i,t}\right)' \gamma + (1-\rho) \mu_{i} + (\phi - \rho) v_{ij,t}$$

where we use

$$E\left(\varepsilon_{i,t+1}^{\omega} \mid \Omega_{it}\right) = E\left(\varepsilon_{i,t+1}^{\upsilon} \mid \Omega_{it}\right) = 0$$
$$E\left(\upsilon_{ij(t+1)}^{1} \mid \Omega_{it}\right) = \phi\upsilon_{ij,t}$$

We can use OLS for estimation!

$$\overline{y}_{it}^{of} = E\left(y_{i,t+1}^{1*} \mid \Omega_{it}\right) + \xi_{it}^{of}$$

$$\overline{y}_{it}^{of} = \rho y_{it}^{*} + (x_{i,t+1} - \rho x_{it})' \gamma + (1 - \rho) \mu_i + (\phi - \rho) \upsilon_{ij,t} + \xi_{it}^{of}$$
(11)

• ξ_{it}^{of} is an elicitation error, assumed to be mean-independent of Ω_{it}

- In the **first step** we can use OLS with fixed effects to estimate Eq. (11) because we do not have expectations about outcomes on the LHS but **expectations about offers**
- In the **second step** we can use GMM to identify the components of the first-step fixed effects (which are **individual- and job-specific**)

We can use OLS for estimation!

$$\overline{y}_{it}^{of} = E\left(y_{i,t+1}^{1*} \mid \Omega_{it}\right) + \xi_{it}^{of} \overline{y}_{it}^{of} = \rho y_{it}^{*} + (x_{i,t+1} - \rho x_{it})' \gamma + (1 - \rho) \mu_i + (\phi - \rho) v_{ij,t} + \xi_{it}^{of}$$
(11)

• ξ_{it}^{of} is an elicitation error, assumed to be mean-independent of Ω_{it}

- In the **first step** we can use OLS with fixed effects to estimate Eq. (11) because we do not have expectations about outcomes on the LHS but **expectations about offers**
- In the **second step** we can use GMM to identify the components of the first-step fixed effects (which are **individual- and job-specific**)

How does our approach work? Using subjective probability distributions of offers

- Similarly, we equate the **probabilities of the best offer at different points** of the distribution to the same objects derived according to the model
- In terms of model quantities

 $Pr\left(y_{i,t+1}^{1*} \leqslant r_{jit} \mid \Omega_{it}\right) =$ $Pr\left(\varepsilon_{i,t+1}^{\omega} + \varepsilon_{ij(t+1)}^{v} \leqslant r_{jit} - \rho y_{i,t}^{*} - (x_{i,t+1} - \rho x_{i,t})' \gamma - (1 - \rho) \mu_{i} - (\phi - \rho) v_{ij(t)} \mid \Omega_{it}\right)$ (12)

How does our approach work? Using subjective probability distributions of offers

- Similarly, we equate the **probabilities of the best offer at different points** of the distribution to the same objects derived according to the model
- In terms of model quantities

$$Pr\left(y_{i,t+1}^{1*} \leqslant r_{jit} \mid \Omega_{it}\right) =$$

$$Pr\left(\varepsilon_{i,t+1}^{\omega} + \varepsilon_{ij(t+1)}^{v} \leqslant r_{jit} - \rho y_{i,t}^{*} - (x_{i,t+1} - \rho x_{i,t})' \gamma - (1 - \rho) \mu_{i} - (\phi - \rho) v_{ij(t)} \mid \Omega_{it}\right)$$
(12)

Estimating risk by OLS with fixed effects

• Assuming that $(\varepsilon_{i,t+1}^{\omega} + \varepsilon_{ij,t+1}^{\upsilon})/\sigma_e$ has a logistic distribution, we can use the logit transformation to obtain:

$$\log it \left(\overline{p}_{jit}^{o}\right) = (1/\sigma_{e}) r_{jit} - (\rho/\sigma_{e}) y_{i,t}^{*} - (x_{i,t+1} - \rho x_{i,t})' (\gamma/\sigma_{e})$$

$$-\mu_{i} (1-\rho) / \sigma_{e} - (1/\sigma_{e}) (\phi - \rho) v_{ij,t} + \xi_{kit}^{p}$$
(13)

- where σ_e is the standard deviation of $\left(\varepsilon_{i,t+1}^{\omega} + \varepsilon_{ij,t+1}^{\upsilon}\right)$ and a measure of risk
- ξ_{kit}^p is the measurement error of the probability questions.

Employment transitions - Estimation

- We use "the percent chance of accepting the offer conditional on it being in each of these bins (k ∈ {0.75, 0.85, 0.95, 1.05, 1.15, 1.25})" to estimate the linear equations
- for the unemployed:

$$\operatorname{logit}\left(p_{(k)i,t}^{ue}\right) = x_{i,t+1}^{u'}\gamma^u + \delta_y^u\left(k\cdot\overline{y}_{it}^{of}\right) + b_\mu^u\mu_i + b_\eta^u\eta_i.$$

• and, for the employed:

System of equation

Employment transitions - Estimation

- We use "the percent chance of accepting the offer conditional on it being in each of these bins (k ∈ {0.75, 0.85, 0.95, 1.05, 1.15, 1.25})" to estimate the linear equations
- for the unemployed:

$$\operatorname{logit}\left(p_{(k)i,t}^{ue}\right) = x_{i,t+1}^{u'}\gamma^u + \delta_y^u\left(k\cdot\overline{y}_{it}^{of}\right) + b_\mu^u\mu_i + b_\eta^u\eta_i.$$

and, for the employed:

System of equation

Employment transitions - Estimation

- We use "the percent chance of accepting the offer conditional on it being in each of these bins (k ∈ {0.75, 0.85, 0.95, 1.05, 1.15, 1.25})" to estimate the linear equations
- for the unemployed:

$$\operatorname{logit}\left(p_{(k)i,t}^{ue}\right) = x_{i,t+1}^{u\prime}\gamma^{u} + \delta_{y}^{u}\left(k \cdot \overline{y}_{it}^{of}\right) + b_{\mu}^{u}\mu_{i} + b_{\eta}^{u}\eta_{i}.$$

• and, for the employed:

$$\begin{array}{lll} \mathsf{mlogit}\left(p_{(k)i,t}^{1}\right) &=& x_{i,t+1}^{1\prime}\gamma^{q} + \delta_{y}^{1}\left(k \cdot \overline{y}_{it}^{of}\right) + b_{\mu}^{1}\mu_{i} + b_{\eta}^{1}\eta_{i} \\ \mathsf{mlogit}\left(p_{(k)i,t}^{0}\right) &=& x_{i,t+1}^{0\prime}\gamma^{0} + \delta_{y}^{0}\widehat{y}_{i,t+1}^{0*} + b_{\mu}^{0}\mu_{i} + b_{\eta}^{0}\eta_{i} \end{array}$$

System of equation

Results: Earnings equation

	Label	Coefficient
Persistence in productivity	ho	0.50^{***}
SD individual FE	σ_{μ}	0.52^{***}
$SD~(\varepsilon_{i,t+1}^\omega+\varepsilon_{ij,t+1}^\upsilon)$	σ_e	0.11^{***}
Pers. job-specific component	ϕ	0.19
SD job-specific component	σ_v	0.69**

* p < 0.1, ** p < 0.05, *** p < 0.01

Persistence of productivity shock - net of the job effects (ASV estimate is 0.91)

Results: Earnings equation

	Label	Coefficient
Persistence in productivity	ho	0.50^{***}
SD individual FE	σ_{μ}	0.52^{***}
$SD~(\varepsilon_{i,t+1}^\omega+\varepsilon_{ij,t+1}^\upsilon)$	σ_{e}	0.11^{***}
Pers. job-specific component	ϕ	0.19
SD job-specific component	σ_v	0.69**

* p < 0.1, ** p < 0.05, *** p < 0.01

Substantial individual heterogeneity (ASV estimate is 0.081). Robustly estimated with linear methods thanks to subjective expectations data

Results: Earnings equation

	Label	Coefficient
Persistence in productivity	ρ	0.50***
SD individual FE	σ_{μ}	0.52^{***}
$SD~(\varepsilon_{i,t+1}^\omega+\varepsilon_{ij,t+1}^\upsilon)$	σ_{e}	0.11^{***}
Pers. job-specific component	ϕ	0.19
SD job-specific component	σ_v	0.69**

* p < 0.1, ** p < 0.05, *** p < 0.01

Low individual risk (ASV gets 0.29). Identified from spread in subjective probability distribution of offers

Results: Earnings equation

	Label	Coefficient
Persistence in productivity	ho	0.50^{***}
SD individual FE	σ_{μ}	0.52^{***}
$SD~(\varepsilon_{i,t+1}^\omega+\varepsilon_{ij,t+1}^\upsilon)$	σ_e	0.11^{***}
Pers. job-specific component	ϕ	0.19
SD job-specific component	σ_v	0.69**

* p < 0.1, ** p < 0.05, *** p < 0.01

Low persistence in job-specific component net of fixed effects (ASV estimate is 0.7)

Results: Earnings equation

	Label	Coefficient
Persistence in productivity	ho	0.50***
SD individual FE	σ_{μ}	0.52^{***}
$SD~(\varepsilon_{i,t+1}^\omega+\varepsilon_{ij,t+1}^\upsilon)$	σ_e	0.11^{***}
Pers. job-specific component	ϕ	0.19
SD job-specific component	σ_v	0.69**

* p < 0.1, ** p < 0.05, *** p < 0.01

Standard deviation of $\upsilon.$ Identified by subjective expectations about hypothetical switches

Results: Transition equations

	Label	Coefficient	PP change
Effect of exp. offer on Pr(working)	δ^u_y	3.36^{***}	0.80
Effect of earnings on Pr(staying)	δ_y^0	0.35**	0.04
Effect of exp. offer on Pr(quitting)	δ_y^1	3.63***	0.60

* p < 0.1, ** p < 0.05, *** p < 0.01

 \uparrow 1% in hypothetical offer increases the probability to accept it by 0.8pp for the unemployed Identified by probability of accepting offers by unemployed and variation in hypothetical offers

Beta coefficients

Results: Transition equations

Effect of exp. offer on Pr(working) δ_y^u 3.36^{***} 0.80 Effect of earnings on Pr(staying) δ_y^0 0.35^{**} 0.04 Effect of exp. offer on Pr(quitting) δ_y^1 3.63^{***} 0.60			Label	Coefficient	PP change
Effect of earnings on Pr(staying) δ_y^0 0.35^{**} 0.04 Effect of exp. offer on Pr(quitting) δ_y^1 3.63^{***} 0.60	Effect of exp. offer or	n Pr(working)	δ^u_y	3.36***	0.80
Effect of exp. offer on Pr(quitting) δ^1_y 3.63^{***} 0.60	Effect of earnings on	Pr(staying)	δ_y^0	0.35^{**}	0.04
0	Effect of exp. offer or	n Pr(quitting)	δ_y^1	3.63***	0.60

* p < 0.1, ** p < 0.05, *** p < 0.01

Results: Transition equations

* 0.80
0.04
* 0.60
;

* p < 0.1, ** p < 0.05, *** p < 0.01

 \uparrow 1% in hypothetical offer increases the probability to quit current job by 0.6pp Identified by probability of job switches and variation in hypothetical offers (Beta coefficients)

- We use New York Fed Survey data on income expectations to estimate a complex model of earnings dynamics and employment transitions, including
 - endogenous selection
 - individual heterogeneity
 - job-specific heterogeneity
- The availability of **subjective probabilities given hypothetical events** (experimentation within the survey) is critical to deal with the selection problem
- Estimation is easy to implement: we estimate a complex model using linear fixed effects regressions and GMM to enforce covariance restrictions
- Work in progress: discuss economic implications of our results

- We use New York Fed Survey data on income expectations to estimate a complex model of earnings dynamics and employment transitions, including
 - endogenous selection
 - individual heterogeneity
 - job-specific heterogeneity
- The availability of **subjective probabilities given hypothetical events** (experimentation within the survey) is critical to deal with the selection problem
- Estimation is easy to implement: we estimate a complex model using linear fixed effects regressions and GMM to enforce covariance restrictions
- Work in progress: discuss economic implications of our results

- We use New York Fed Survey data on income expectations to estimate a complex model of earnings dynamics and employment transitions, including
 - endogenous selection
 - individual heterogeneity
 - job-specific heterogeneity
- The availability of **subjective probabilities given hypothetical events** (experimentation within the survey) is critical to deal with the selection problem
- Estimation is easy to implement: we estimate a complex model using linear fixed effects regressions and GMM to enforce covariance restrictions
- Work in progress: discuss economic implications of our results

- We use New York Fed Survey data on income expectations to estimate a complex model of earnings dynamics and employment transitions, including
 - endogenous selection
 - individual heterogeneity
 - job-specific heterogeneity
- The availability of **subjective probabilities given hypothetical events** (experimentation within the survey) is critical to deal with the selection problem
- Estimation is easy to implement: we estimate a complex model using linear fixed effects regressions and GMM to enforce covariance restrictions
- Work in progress: discuss economic implications of our results

Probability of getting an offer

Probability of accepting an offer in the event of...

What is the percent chance of accepting an offer ...?

Subjective distribution of receiving/accepting an offer

	1	2	3	4	5	6
Receiving an offer	12.5	15.1	22.5	19.7	12.5	17.7
Accepting an offer	5.2	5.7	12.5	23.7	20.4	32.5

Percentage of observations with positive values in 1 to 6 bins

Estimation: system of equations.

In the first step, we estimate each equation by fixed effects regressions, and obtain the residuals:

$$\begin{split} \overline{y}_{it}^{of} &= \rho y_{it}^* + (x_{i,t+1} - \rho x_{it})' \,\hat{\gamma} + r y_{it}^{of} \\ \overline{\ell}_{kit}^o &= (1/\sigma_e) \, r_{kit} - (\rho/\sigma_e) \, y_{it}^* - (x_{i,t+1} - \rho x_{it})' \, \gamma/\sigma_e + r \ell_{kit}^o \\ \overline{\ell}_{kit}^{ue} &= x_{i,t+1}^{u\prime} \gamma^u + \delta_y^u \left(k \overline{y}_{it}^{of} \right) + r p_{kit}^{ue} \\ \overline{\ell}_{kit}^1 &= x_{i,t+1}^{1\prime} \gamma^1 + \delta_y^1 \left(k \overline{y}_{it}^{of} \right) + r p_{kit}^1 \\ \overline{\ell}_{kit}^0 &= x_{i,t+1}^{0\prime} \gamma^0 + \delta_y^0 \hat{y}_{i,t+1}^{0*} + r p_{kit}^0 \end{split}$$

In the first step, we obtain an estimate of $\hat{\rho}$, $\hat{\delta}^{\hat{u}}_y$, $\hat{\delta}^{\hat{1}}_y$ and $\hat{\delta}^{\hat{0}}_y$.

Estimation: system of equations.

In the first step, we estimate each equation by fixed effects regressions, and obtain the residuals:

$$\begin{split} \overline{y}_{it}^{of} &= \rho y_{it}^* + (x_{i,t+1} - \rho x_{it})' \,\hat{\gamma} + r y_{it}^{of} \\ \overline{\ell}_{kit}^o &= (1/\sigma_e) \, r_{kit} - (\rho/\sigma_e) \, y_{it}^* - (x_{i,t+1} - \rho x_{it})' \, \gamma/\sigma_e + r \ell_{kit}^o \\ \overline{\ell}_{kit}^{ue} &= x_{i,t+1}^{u\prime} \gamma^u + \delta_y^u \left(k \overline{y}_{it}^{of} \right) + r p_{kit}^{ue} \\ \overline{\ell}_{kit}^1 &= x_{i,t+1}^{1\prime} \gamma^1 + \delta_y^1 \left(k \overline{y}_{it}^{of} \right) + r p_{kit}^1 \\ \overline{\ell}_{kit}^0 &= x_{i,t+1}^{0\prime} \gamma^0 + \delta_y^0 \hat{y}_{i,t+1}^{0*} + r p_{kit}^0 \end{split}$$

In the first step, we obtain an estimate of $\hat{\rho}$, $\hat{\delta}^{\hat{u}}_y$, $\hat{\delta}^{\hat{1}}_y$ and $\hat{\delta}^{\hat{0}}_y$.

In step 2, we impose the covariance structure by Minimum Distance to the estimated residuals:

$$\begin{split} \overline{ry}_{it}^{of} &= (1-\rho)\mu_i + \upsilon_{ij(t)}(\phi-\rho) + \xi_{it}^{of} \\ \overline{rl}_{kit}^o &= -\mu_i(1-\rho)/\sigma_e - \upsilon_{ij(t)}(\phi-\rho)/\sigma_e + \xi_{kit}^p \\ \overline{rp}_{kit}^{ue} &= b_{\mu}^u \mu_i + b_{\eta}^u \eta_i + \xi_{kit}^{ue} \\ \overline{rp}_{kit}^1 &= b_{\mu}^1 \mu_i + b_{\eta}^1 \eta_i + \xi_{kit}^1 \\ \overline{rp}_{kit}^0 &= b_{\mu}^0 \mu_i + b_{\eta}^0 \eta_i + \xi_{kit}^0 \end{split}$$

Transitions from unemployment

• Currently unemployed ($e_{it} = 0$) compare value of new employment to non-employment

$$ue_{i,t+1}^{*} = x_{i,t+1}^{\prime}\gamma^{u} + \frac{\delta_{y}^{u}y_{i,t+1}^{1*}}{y_{i,t+1}^{u}} + b_{\mu}^{u}\mu_{i} + b_{\eta}^{u}\eta_{i} + \varepsilon_{i,t+1}^{u}$$
(14)

- η_i : mobility individual effect
- If $\delta_y^u \neq 0$, endogenous self-selection into employment
- Assuming that $\varepsilon_{i,t+1}^u$ has an extreme value distribution conditionally on $\varepsilon_{i,t+1} = \left(\varepsilon_{i,t+1}^{\omega}, \varepsilon_{ij(t+1)}^{v}\right)$ and $\Omega_{it} = \left(y_{i,t}^*, x_{i,s}, \mu_i, \eta_i, v_{ij(t)}\right)$ – gives rise to a logit model

Transition from unemployment - estimation

- We observe "the percent chance of accepting the offer conditional on it being in each of these bins", y¹_{i,t+1} ≈ km^o_{it} for k ∈ {0.85, 0.95, 1.05, 1.15}
- Thus, we have the linear estimation equation:

$$\ln\left(\frac{p_{(k)i,t}^{ue}}{1-p_{(k)i,t}^{ue}}\right) = x_{i,t+1}^{u}\gamma^u + \delta_y^u\left(k\overline{m}_{it}^o\right) + b_u^\mu\mu_i + b_u^\eta\eta_i$$

▲ Back _

Employment transitions: a multinomial choice model

- Currently employed compare values of being unemployed, employed in same or new job
- Normalize value of unemployment to zero
- Value of staying employed in same job (s = 0) or new job (s = 1) is

$$ee_{i,t+1}^{s*} = x_{i,t+1}^{s'}\gamma^s + \delta_y^s y_{i,t+1}^* + b_\mu^s \mu_i + b_\eta^s \eta_i + \varepsilon_{i,t+1}^s$$
(15)

- η_i : mobility individual effect
- If $\delta_y^s \neq 0$, endogenous self-selection into both job switches and employment

◀ Back

Transitions from employment

• Assuming that $\varepsilon_{i,t+1}^0$ and $\varepsilon_{i,t+1}^1$ are independent with an extreme value distribution (conditionally on $\varepsilon_{i,t+1} = \left(\varepsilon_{i,t+1}^{\omega}, \varepsilon_{ij(t+1)}^{\upsilon}\right)$ and $\Omega_{it} = \left(y_{i,t}^*, x_{i,s}, \mu_i, \upsilon_{ij(t)}\right)$) gives rise to the multinomial logit model. Letting the probabilities

$$p_{i,t}^{1} = \Pr\left(0_{i,t+1} = 1, e_{i,t+1} = 1 \mid \varepsilon_{i,t+1}, \Omega_{it}, e_{i,t} = 1\right)$$
(16)

$$p_{i,t}^{0} = \Pr\left(s_{i,t+1} = 0, e_{i,t+1} = 1 \mid \varepsilon_{i,t+1}, \Omega_{it}, e_{i,t} = 1\right),$$
(17)

we obtain the following log odds ratios:

$$\ln\left(\frac{p_{i,t}^{1}}{1-p_{i,t}^{1}-p_{i,t}^{0}}\right) = x_{i,t+1}^{1\prime}\gamma^{1} + \delta_{y}^{1}y_{i,t+1}^{1*} + b_{\mu}^{1}\mu_{i} + b_{\eta}^{1}\eta_{i}$$
(18)
$$\ln\left(\frac{p_{i,t}^{0}}{1-p_{i,t}^{1}-p_{i,t}^{0}}\right) = x_{i,t+1}^{0\prime}\gamma^{0} + \delta_{y}^{0}y_{i,t+1}^{0*} + b_{\mu}^{0}\mu_{i} + b_{\eta}^{0}\eta_{i}.$$
(19)

Second step results

-6.865***	(2.066)
0.940	(1.597)
-4.712***	(0.647)
0.646**	(0.262)
-0.615^{***}	(0.190)
-0.589***	(0.067)

🖪 🛛 🖌